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Abstract. The phase diagram of the extended Hubbard model with on-site attraction and 
random inter-site Coulomb energies is studied for the half-filled band case. In the strong 
coupling limit the problem is mapped onto the system of hard-core bosons (bipolarons) 
on a lattice, described by the anisotropic pseudo-spin model with infinite-range random 
exchange interactions-in close analogy to the Sherrington-Kirkpatrick spin-glass approach. 
It is found that the disorder and frustrationstrongly affectsproperties of the systemleading to 
the appearance of the bipolaronic superconducting phase, the bipolaronic superconducting 
glass state as well as the bipolaronic charge glass phase, depending on the temperature range 
and the degree of the disorder. 

1. Introduction 

The effect of non-magnetic disorder on superconductivity, first addressed for metals in 
the pioneering works of Anderson (1959) and Abrikosov and Gorkov (19591, turns out 
to be of little importance for the thermodynamic properties of ordinary superconductors. 
Since the discovery of the new high T, superconductors (Bednorz and Muller 1986) it 
has become clear that this disorder plays an important role in the attributes of the new 
superconductors, manifesting itself as a typical glass-type behaviour (Muller et a1 1987). 

Most subsequent work performed on glassy behaviour in high T, superconductors 
has been based on phenomenological models and has argued that the glassy properties 
are a product of the granular nature of the samples. However, the influence of disorder 
at the macroscopic level addressed in these works has not exhausted the problem of 
current interest: what does the microscopic structural disorder do to superconductivity 
in strongly correlated electron systems? For example, the analogy between spin glasses 
and the problem of highly localised electrons interacting via the Coulomb potential is 
well known (Efros and Shklovski 1975, Efros 1976). In this so-called ‘electron glass’, on 
cooling from the high temperature phase, Monte Carlo simulations indicate spin-glass- 
like freezing (Davies et a1 1982). From this point of view the investigation of the 
glassy properties with reference to a microscopic mechanism of superconductivity, with 
simultaneous consideration of the disorder and frustration, is an important theoretical 
issue, 

According to the more conventional treatment, the superconducting glass model is 
described by a disordered array of Josephson junctions, in close analogy to that for 
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granular superconductors (Morgenstern et aZ1988). In a different approach pursued by 
Oppermann (1987), the possibility of a superconducting glass phase was considered in 
the context of the quantum theory of localisation and superconductivity in the weak- 
coupling regime. However, for the new high T, superconductors it has been known for 
some time that the tight-binding approach with strong electron-electron correlations 
appears to be more appropriate than the nearly-free electron picture. Therefore, the 
strong-coupling theory of the superconducting glass phase is of particular interest. 

2. Themodel 

In the present paper we propose a model of superconducting glass based on the systems 
of strongly correlated electrons described by the Hubbard Hamiltonian with negative 
on-site Coulomb energy given by 

H = tijaifoaju - I U1 2 nit  nil + d Vijniun,ur - p niu 
ijo i ij io 

uu' 

where aio(a&) is the annihilation (creation) operator for an electron with the spin 
projection B at the ith lattice site and n j  = aifoa,,. Furthermore, - 1  U1 is the attractive 
on-site potential (e.g., due to the strong electron-phonon coupling) while Vij refers to 
the inter-site Coulomb potential (which can be either repulsive or attractive). Finally, 
tii is the matrix element of the electron transfer between the lattice sites, while p 
represents the chemical potential. 

To obtain non-trivial superconducting glass features it appears that the model must 
have a substantial amount of randomness and frustration. There have been attempts to 
model the superconducting glass behaviour by having the former ingredient without the 
latter by introducing a kind of diagonal disorder via the random site energies in the 
Hamiltonian (1) (Kulik and Pedan 1980, Micnas et ai 1985), but it seems that frustration 
is essential for the superconducting glass properties. However, one can account for both 
of them in a simple and non-trivial manner by considering random inter-site Coulomb 
potentials Vjj  (off-diagonal disorder). In physical terms the randomness in the variables 
Vij is induced by structural disorder (random displacements and vacancies) which can 
be described by the suitable distribution P(Vij). The standard choice is the Gaussian one 
and in the infinite-range case one has (Sherrington and Kirkpatrick 1975) 

P(v,) = ( N / ~ J T V ~ ) ' / ~  exp( - N V ~ / ~ V )  ( 2 )  

where V denotes the variance of the distribution and N is the number of lattice sites. In 
passing we note that the long-range nature of interactions originating from the Cou- 
lombic character of the inter-bond potential justifies the use of formula ( 2 ) .  

3. The effective pseudo-spin Hamiltonian and the order parameters 

In the strong coupling regime ( t 2 / U 6  1) the Hubbard Hamiltonian (1) can be trans- 
formed into a pseudo-spin effective Hamiltonian describing the bipolaronic system, 
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which can be seen as a gas of hard-core bosons on a lattice (Robaszkiewicz et a1 1981, 
1982 and references therein). The resulting Hamiltonian turns out to be 

whereJ, = 2t;/1 U [ ,  Kr, = J ,  + 2V,  andp,, ( a  = x, y, 2) are the spin4 matrices related to 
the bipolaron annihilation (b,)  and creation (b:) operators by 

pzt = 3 - b:b, pXr  = &(b,  + b:) p y r  = (i /2)(br - b:) (4) 

where b: = a:? 
It is easy to recognise that in the pseudo-spin description (4) the bipolaronic hopping 

term transforms into a 'ferromagnetic' coupling J,, in the xy-plane, whereas K,, maps 
onto random longitudinal interactions between pseudo-spins. The chemical potential, in 
turn, plays the role of an external field determined by the bipolaron number-conservation 
condition 

and b, = a, .1 a, . 

where nh denotes the bipolaron density. Since the VV are the same for all pairs of pseudo- 
spins, one obtains 

and in order to ensure sensible thermodynamic limit one has also to have Jr, = J / N ,  i.e. 
tIj = t /N and U = U / N .  

The superconducting order parameter A describing the off-diagonal long-range 
order (phase coherence between bipolarons) corresponds to the expectation value of 
the transverse pseudo-spin component A = (p,,). Because of disorder, in a manner 
analogous with the conventional spin-glass problem, we introduce the Edwards- 
Anderson-like ((EA) Edwards and Anderson 1975) order parameter 

to describe the glass phase. Here, pzi(t)  = 3 - nh(t) is the bipolaron occupation number 
operator at the time t and ( .  . .), refers to the average of the Vij interactions over the 
random configuration. The meaning of this quantity is that it represents the fraction of 
the bipolarons that get stuck in the configurations that would not change over any finite 
time, distinguishing between the glass (q  # 0) and non-glass (q  = 0) phases. 

4. The results 

A common theoretical approach to the spin-glass problem is to map the physical dis- 
ordered system onto an effective pure one by use of the familiar "replica trick' (Edwards 
and Anderson 1975). Unfortunately, a straightforward application of this technique 
to the present problem is obstructed by the non-commuting nature of the operators 
appearing in (3). Recently, however, an alternative approach has been implemented for 
the case of the quantum spin glass (KopeC 1988) based on thermo-field dynamics (TFD) 
(Umezawa et a1 1982). This method allows one to circumvent the use of replicas and 
incorporates in a natural way the dynamic definition of the glass-order parameter (6). 



400 T K Kopei. and P Wrobel 

V / J  

Figure 1. Phase diagram of the system resulting from equations ( 7 ) .  

However, before we give the highlights of the calculation we quote the main results of 
this work expressed in terms of the self-consistent equations for the superconducting 
and glass-order parameter that read 

+-s 

tanh[/3O(z)/2]/O(z) 
-r 

1 d z  
q = -J -e-z*/2 [ p + 4 Vzq /O (2) ] t anh [PO (2)/2] 

--s (2n) 112 

where O(z )  = [(UA)' + ( p  + 4 V ~ q ' / ~ ) ~ ] ' / ~ ,  f i  = l/kBTand J = 2t2/1 Ul. Equations (7a) 
and (7b) are subject to the conditions that fix the chemical potential p for a given 
bipolaron density n b :  

d z  
[ p + 4 Vzq ' I 2 /@ (z)] tanh [PO (z)/2]. 

1 

Although equations (7)  are valid for the arbitrary value of n b ,  in the rest of this work we 
will consider only the half-filled band case ( a b  = 4). In the pseudo-spin language this is 
the case of the zero external field ( p  = 0). For arbitrary band-filling it follows from 
equation (7b) that for any temperature q # 0 since the longitudinal field is present. In 
this case, the glass transition would be analogous to the transition on the de Almeida- 
Thouless line (de Almeida and Thouless 1978) rather than the zero field spin-glass 
transition. Therefore in the general case (nb # 4) equations (7)  have to be supplemented 
by the corresponding stability condition in order to determine the glass transition 
boundary in the parameter space (kgT,  V ,  a b ) .  For the n b  = 4 case it is straightforward 
to solve (7a) and (7b) numerically for A and q and also to obtain analytic results in 
limiting cases. The resulting phase diagram is shown in figure 1, where the following 
phases emerge. 

(i) The normal (NC) and non-glass phase: A = q = 0. 
(ii) The bipolaronic superconducting phase (BSC): A # 0, q = 0. 
(iii) The bipolaronic superconducting glass phase (BSCG): A # 0 ,  q # 0. In this case 

both off-diagonal long-range superconducting order and diagonal glass order are pre- 
dicted to coexist. Due to the non-vanishing of q ,  the system of bipolarons is stuck into a 



BSG in random infinite-range interaction Hubbard model 40 1 

particular configuration in the phase space and cannst easily relax into another one, 
implying hysteresis and a non-ergodic behaviour typical of glasses. Because A is finite 
the BSCG is predicted to be in the Meissner state. 

(iv) The bipolaronic charge glass (BCG) phase: A = 0, q # 0. In this phase the super- 
conducting long-range order is suppressed, whereas the glass order persists, indicating 
non-ergodic behaviour. 

5. Themethod 

Now we present the logic that leads to equations (7). Because the highlights of the TFD 
method in the context of the quantum spin-glass problem have already appeared in the 
literature (Kopek 1988), we can be brief. In order to incorporate thermal effects in TFD 
one requires the doubling of degrees of freedom (Umezawa et aZl982) by associating 
with any operator A(=A1) a tilde-conjugate one A'(=A2). Specifically, the dynamics 
are generated by the thermal Hamiltonian A 

where H i s  the Hamiltonian of the bipolaronic system (3). The temperature enters the 
theory through the thermal vacuum lO(p)) which is constructed in such a way that the 
quantum-mechanical expectation value between the thermal vacua corresponds to the 
thermal average (Umezawa et a1 1982) 

A = H - A E H[pl] - H[p2] (8) 

(O(p)l . . . lO(p)) = Tr . . . exp( -PH)/Tr exp( -pH). (9) 
Because of the thermal vacuum amplitude normalisation condition (Matsumoto et al 
1984), it is possible to perform a disorder average with P(VJ On the generating func- 
tional for the real-time TFD causal Green function without resorting to replicas. Pro- 
ceeding in an analogous way to the case of a quantum Ising spin glass (Kopek 1988), we 
arrive at the disorder averaged generating functional written in the form of the functional 
integral 

@[VI)" = [n Dq:][n DQa'] ex~(-NyCq,  Ql + Q[vI) (10) 
aa 4 

where the single-site dynamic Lagrangian reads 
i 

 ye[^, Ql = i[(cpxj Q ~ ~ ) + ( v ~ ,  qy)-(cp2,  q z > l + T r  Q 2  - ln@[qp,  Ql (11) 

while Q[q] refers to the source term, the precise form of which depends on the kind of 
correlations we are interested in. Furthermore, 

+= 
( ( ? a ,  Val  = 1 d t 2  q:(tb:(t) 

J - ,  a 

Tr Q2  [+= d t  dt '  2 Q"@(t, t')Qfi"(t', t )  
J - ,  J - -  a6 

where QaP(t, t') represents a 2 x 2 symmetric matrix field, a = x ,  y ,  z ,  and a, p = 1,2.  
Subsequently 

where 10, p) denotes the thermal vacuum corresponding to the single-site Hamiltonian 
Ho = - ,U Z (2p2 + l), while 

@[q, Q] = (0, piup,, ( - C O ,  +..)lo, P )  (13) 
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is the time-ordered exponential resulting from the interaction picture. The effective 
time-dependent single-site thermal Hamiltonian then reads 

l') = 2 {(2E,J)1'2[q?,"(t)p,"(t) + qF(t>p,"(t) - 9':(t)PZ"(t)1 
W P  

X 6 ( t -  t')6,, + 2 ( ~ , ~ p ) ~ / ~ v Q @ ( t ,  t ' )p;( t )pf( t ' ) }  (15) 
where 
defined in the interaction picture in the standard way as 

= 1 and E~ = -1. Finally, the pseudo-spin operators appearing in (14) are 

p ~ ( t )  = exp(iAot)pz(0) exp(-i Bot) (a = x ,  y ,  z ;  cy = 1,2).  (16) 
The effective dynamic Hamiltonian (15) contains the fluctuating local field qf and the 
dynamic pseudo-spin self-interaction Q"P(t, t ' ) ,  which have to be calculated self-con- 
sistently. In the N +  cc limit the saddle point method can be used, which amounts to 
finding for q and Q fields their stationary point values qo and Qo from equations 

69e[q, Ql/aG = 0 6 3 [ q ,  Q]/SQ"@ = 0. (17) 
Consequently one obtains 

qz0 = (2~,J)~/'(p:), QrP = S ( E , E B ) ~ / * V G ~ ~ ( ~ , ~ ' )  
(18) G,&, t ' )  = - i(irp"'>)p 

where 

(. . J p  = ( O , @ l . .  . Up0,Qo(-", +=)lO,B). (19) 
In the glass phase the dynamic self-interaction, acquires a time-persistent contribution. 
Therefore we factorise the causal TFD matrix Green function into the finite (Ggt) and 
time-persistent (GZf,) parts: 

G"P(t, t ' )  = GE!(t, t ' )  + GgE,(t, t ' ) .  (20) 
In the thermal equilibrium case one has, for the Fourier-transformed finite-time part 
(KopeC 1988), 

with GR(A)( U )  being the retarded (advanced) Green function. Correspondingly, Greg( U )  

is the thermodynamic correlation function, which is related to GR(u) by means of the 
fluctuation-dissipation theorem 

Furthermore, it turns out that the time-persistent part has the form 
CIe,(u) = coth(pu/2) Im GR(u) .  (22) 

where q is the EA type glass-order parameter (6). Indeed, by substituting equation (23) 
into (20) and using relation (21), one obtains for the fall correlation function 

C(U) = Creg(m> + 2 n q b ( ~ )  (24) 
according to the dynamic EA definition of the glass-order parameter. Moreover, the 
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time-persistent contribution to the effective thermal Hamiltonian (15) can be written in 
the form of a static random component, which acts as random longitudinal field to 
generate the time-persistent autocorrelation. Accordingly, the effective thermal average 
(19) becomes 

where IO(@, z)) is the thermal vacuum associated with the single-site Hamiltonian 
HA = H o  + 2Vzq1/*p, with static noise, while the time-ordered exponential (14) now 
contains only the finite-time part of the dynamic self-interaction. It turns out, however, 
that the finite part of the dynamic pseudo-spin self-interaction also persists in the non- 
glass phase, making the explicit solution of the self-consistent equations (18) a highly 
non-trivial task. This is the special feature of the quantum problem, where the dynamic 
effects contribute even to the static quantities. Nevertheless, one can resort to the static 
approximation (Kopek 1988), which effectively replaces the dynamic quantities (like 
the response functions) by their zero-frequency counterparts, thus approximating the 
dynamic pseudo-spin self-interaction by the static quantity. Proceeding in this way one 
finally arrives at equations (7). 

6. Final remarks 

Closing, we should point out that the result (7 ) ,  involving a single glass-order parameter 
description, seems to correspond to the replica-symmetric solution, which turns out to 
be unstable in the glass phase. Thus, the precise characterisation of the superconducting 
glass phase is obstructed, with similar difficulties to those arising in the case of the low 
temperature phase in the magnetic spin glasses. The investigation of the stability of the 
solution (7) is of great interest, since it would enable one to extend the analysispresented 
to the case of non-half-filled band, where the glass parameter q alone is ineffective in 
singling out the glassy phase. Also of interest are other distributions of random variables 
VL, (e.g. the Gaussian distribution with a non-vanishing mean, opening the possibility 
for the bipolaronic charge disproportionation phase), as well as the inclusion of the 
electromagnetic vector potential in order to study the superconducting glass phase 
boundary as a function of the external magnetic field. We hope to return to these 
questions in future work. 
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